## Homework \# 12: The geometry of a function via its derivatives

Note: Your work can only be assessed if it is legible. A single final answer will be considered a guess and awarded minimal credit.

1. Consider the function $f(x)=2+2 x^{2}-x^{4}$.
(a) Find the critical numbers of $f(x)$.
(b) On which intervals is $f(x)$ increasing? Decreasing?
(c) On which intervals is $f(x)$ concave up? Concave down?
(d) Find the exact $x$-values of the inflection points of $f(x)$.
(e) Sketch $f(x)$.
2. For the following functions determine the exact $x$-values of all local maxima and minima. You must classify each max and min as such and verify your claim in each case via a derivative test.
(a) $f(x)=x^{5}-2 x^{3}$
(b) $f(x)=x-2 \sin x$ for $-2 \pi<x<2 \pi$.
(c) $f(x)=e^{-x}-e^{-3 x}$ for $x>0$
3. Below is a graph of $y=f^{\prime}(x)$. Determine the intervals where $f(x)$ is increasing and decreasing, the intervals where $f(x)$ concave up and concave down, the $x$-values where $f(x)$ has local maxima and minima, and the $x$-values where $f(x)$ has inflection points.

4. (a) $\mathrm{T} / \mathrm{F}$ (with justification) If $f(x)$ is a differentiable function on $(a, b)$ and $f^{\prime}(c)=0$ for some $c$ in $(a, b)$ then $f(x)$ has a local maximum or minimum value at $x=c$.
(b) $\mathrm{T} / \mathrm{F}$ (with justification) If a functin $f(x)$ on the interval $(-1,1)$ is twice differentiable and $f^{\prime \prime}(c)=0$ for some $c$ in $(-1,1)$ then $f(x)$ has an inflection point at $x=c$.
