Name: \qquad

Homework \#10: Linearization and related rates

Note: This portion will be done in class.

1. Consider a cube of side length x which expands over time. Give the rate at which the volume of the cube V increases in terms of the rate at which x changes.
2. Air is being pumped into a spherical balloon so that its volume increases at a rate of $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast it the radius of the balloon increasing when the diameter is 50 cm ?
3. Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and volume V satisfy the equation $P V=k$, where k is a constant. Suppose that while compressing a certain gas, we have at a particular instant that the volume is $600 \mathrm{~cm}^{3}$, the pressure is 150 kPa , and the pressure is increasing at a rate of $20 \mathrm{kPa} / \mathrm{min}$. At what rate is the volume decreasing at this instant?
4. On a particularly windy day, a park-goer decides to fly a kite. They decide to fly the kite at a constant altitude of 300 ft . At this height the wind pulls the kite horizontally away from the kite-flier at a rate of $44 \mathrm{ft} / \mathrm{sec} .{ }^{1}$ How fast will the flier be releasing the string when the kite is 400 ft away (from the park-goer)?
[^0]Note: You are responsible for completing this portion.
5. Find the linearization of $f(x)=x^{3 / 4}$ at $x=16$ use it to approximate $(17)^{3 / 4}$.

Note: You need not find a decimal answer; if you do, you may be interested in comparing it against the approximation of $(17)^{3 / 4} \approx 8.37214402859$.
6. (a) Linearize $f(x)=\ln x$ at $x=1$ and use it to approximate $\ln 1.1$ and $\ln 2$.

Note: You need not find a decimal answer; if you do, you may be interested in comparing it against the approximation of $\ln 1.1 \approx 0.0953101798043$.
(b) To make a linear approximation more accurate, we need take the point of tangency closer to the input we desire to approximate.
Above you approximated $\ln 2$ using a linearization at $x=1$. Use a linearization of $\ln x$ at $x=e$ to approximate 2 .
Note: You need not find a decimal answer; you may be interested to know $2 / e \approx 0.735758882343$ and $\ln 2 \approx 0.69314718056$.
7. (a) If A is the area of a circle with radius r and the circle expands as time passes, find $d A / d t$ in terms of $d r / d t$.
(b) Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the area of the spill increasing when the radius is 30 m ?
8. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 meter higher than the bow of the boat. If the rope is pulled in at a rate of 1 meter per second, how fast is the boat approaching the dock when it is 8 meters from the dock?

9. Gravel is being dumped from a conveyor belt at a rate of $10 \mathrm{ft}^{3} / \mathrm{min}$. The coarseness is such that the gravel forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 11 ft high?
Hint: The formula for volume of a cone is given by $V=\frac{1}{3} \pi r^{2} h$.

[^0]: ${ }^{1}$ For those curious, this wind speed equates to a 6 of 12 on the Beaufort wind force scale. A 0 on the scale corresponds to essentially no wind while a 12 is hurricane force. A 6 on the scale would mean an umbrella is unpleasant to use.

