Homework \#8: Implicit differentiation

Note: Your work can only be assessed if it is legible.

1. Find $\frac{d y}{d x}$ using implicit differentiation. Solve for $\frac{d y}{d x}$ in terms of x and y in each case.
(a) $2 x^{3}+x^{2} y-x y^{3}=2$
(b) $\cos (x y)=1+\sin y$
(c) $e^{y} \sin x=x+x y$
2. Use implicit differentiation to find an equation of the tangent line to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

at the point $(0,1 / 2)$.
Note: The graph of this equation is known as a cardioid (see below). This is not a graph of a function but we can still geometrically analyze it using implicit differentiation.

3. The curve with equation

$$
y^{2}=x^{3}+3 x^{2}
$$

is called the Tschirnhuasen cubic (see below). At what points does this curve have horizontal tangents?

In class we used implicit differentiation to find derivatives of a couple of the inverse functions in this table.

$f(x)$	$f^{\prime}(x)$	$f(x)$	$f^{\prime}(x)$
$\arcsin x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\ln x$	$\frac{1}{x}$
$\arccos x$		$\log _{a} x$	
$\arctan x$			

Here you will use implicit differentiation to find the rest.
4. Inverse trig. functions. Simplify your answers.
(a) Use implicit differentiation to find the derivative of $y=\arccos x$.
(b) Use implicit differentiation to find the derivative of $y=\arctan x$.
5. Use implicit differentiation to find the derivative of $y=\log _{a} x$.
6. In class, we used logarithmic differentiation to show that for any real number $n,\left(x^{n}\right)^{\prime}=n x^{n-1}$. Use that same technique to find the derivative of the following functions.
(a) $y=\sqrt{x}^{x}$
(b) $y=x^{\cos x}$
7. Differentiate the following functions. You may use any rule or identity.
(a) $y=\ln x^{2}$
(b) $f(x)=\frac{1}{x^{3}}$
(c) $f(x)=\frac{1}{\sqrt[3]{x}}$
(d) $y=\log _{2}(\arctan x)$
(e) $f(x)=x \ln x-x$
8. Here is a graph of the function $y=\frac{\ln x}{x}$.

Find equations of the tangent lines to this graph at:
(a) $x=1$
(b) and $x=e$.

