Name: \qquad

Homework \#5: The derivative of a function

Note: Your work can only be assessed if it is legible. You must use the limit definition of the derivative. You do not need a calculator to complete this assignment.

1. Suppose $f(x)$ is a function such that $f(3)=2$ and $f^{\prime}(3)=4$. Give an equation for the line tangent to the graph $y=f(x)$ at the point $(3, f(3))$.
2. The function $f(x)=\frac{1}{x+1}$ is graphed below. Find $f^{\prime}(1)$ and use it to give an equation of the tangent line to $y=f(x)$ at $x=1$.

3. Find the derivative $f^{\prime}(x)$ for each of the following functions. Show your work.
(a) $f(x)=4 x^{2}+1$
(b) $f(x)=\sqrt{2 x}$
(c) $f(x)=\frac{1-x}{2+x}$
(d) $f(x)=m x+b$ where m and b are arbitrary constants.
4. The graph of $y=f(x)$ is pictured below.

(a) Compute each derivative below. If a derivative does not exist, write DNE.
i. $f^{\prime}(-2)$
ii. $f^{\prime}(1)$
iii. $f^{\prime}(-1)$
iv. $f^{\prime}(2)$
v. $f^{\prime}(0)$
(b) Sketch a graph of the derivative $f^{\prime}(x)$ for $-3 \leqslant x \leqslant 3$.
5. In class we mentioned that if a function is differentiable at $x=a$ then it is also continuous there. With that in mind, consider the following statements.
(a) T / F (with justification) A function that is continuous at a is also differentiable at a.
(b) T / F (with justification) If $f^{\prime}(2)$ exists, then $\lim _{x \rightarrow 2} f(x)=f(2)$.
6. Bonus: Give the name of a function which is continuous at every point but is differentiable at no point. Hint: Use Google.
